Download PDF Photoluminescence properties and the influence of the Stark effect of a ZnIn₂S₄ crystal doped with Nd
  • Original research
  • Open access
  • Published: 30 Dec 2025

Photoluminescence properties and the influence of the Stark effect of a ZnIn₂S₄ crystal doped with Nd

S.G. Asadullayeva
&
Sh.Sh. Amirov

UNEC Journal of Engineering and Applied Sciences Volume 5, No 2, pages 104-109 (2025) Cite this article,  64 https://doi.org/10.61640/ujeas.2025.1209

Abstract

In this work, the photoluminescence properties of ZnIn₂S₄ chalcogenide crystals doped with Nd³⁺ ions were investigated. As a result of spectral measurements carried out in the wavelength range of 550–930 nm, three main emission peak groups corresponding to the internal transitions of Nd³⁺ ions ⁴G₅/₂ → ⁴I₉/₂, ⁴F₉/₂ → ⁴I₉/₂ and ⁴F₃/₂ → ⁴I₉/₂ were identified. As a result of increasing the diffraction grating permittivity, a fine structure due to the Stark effect was observed in each of these peaks. Also, lowering the temperature weakened the effect of phonons, leading to a narrowing of the peaks and an increase in the emission intensity. The obtained results demonstrate the high sensitivity of Nd³⁺ ions to crystal field and temperature variations and indicate the prospects of this material in photonic applications.

Introduction

Recently, ternary metal chalcogenide compounds, especially those of the AB₂X₄ type (where A and B are metal elements and X is a chalcogen element such as sulfur, selenium or tellurium), have attracted the attention of the scientific community due to their interesting optical and electronic properties. CdIn₂S₄, ZnIn₂Se₄, CdGa₂S₄, ZnGa₂S₄ and other similar materials belonging to this group have a wide range of applications and have high potential as semiconductors [1-10]. These compounds are of great importance, especially for use in photocatalysis, solar energy conversion, optoelectronics and sensor technologies. The tunable energy gaps, high photostability and environmental compatibility of these materials make them an alternative to traditional semiconductors [11-19]. One of the compounds belonging to this group, zinc indium sulfide (ZnIn₂S₄), occupies an important place due to its light absorption capacity in the visible light spectrum, high chemical stability and environmental safety. Due to its layered crystal structure, ZnIn₂S₄ provides effective charge separation and transport, which significantly improves its optical performance [5,18-25]. Optical properties of the ZnIn₂S₄ compound, such as light absorption behavior, photoluminescence properties and energy gap, determine the wide application of this material in light energy harvesting and photoelectronic technologies. In addition, the study of the structural structure, morphological features and the effect of external factors such as temperature and pressure on the optical properties of the ZnIn₂S₄ material is of great importance in terms of optimizing the functional applications of the ZnIn₂S₄ material [26-34]. On the other hand, as is known, rare earth ions have a developed system of electronic states associated with the ground state with forbidden transitions in crystal matrices. Often, such metastable states, which have a duration of milliseconds or more, allow the creation and maintenance of a significant part of the activating ions without resorting to particularly strong excitations. It is known that the photoluminescence of these compounds occurs due to the intra-center transitions of rare earth elements [34-40]. In this regard, ZnIn₂S₄:REE type ternary alkaline earth chalcogenide semiconductors are promising. In this research work, the emission properties of the neodymium-doped ZnIn₂S₄ compound are systematically investigated, the effect of the changes occurring under the influence of neodymium on the optical behavior is analyzed, and the potential of the material for application in modern optoelectronics is evaluated.
Layered metal chalcogenides show strong sensitivity of their electronic and luminescent properties to defects, impurities, and local crystal-field effects, making doping an effective approach for property modulation [41–48]. In particular, rare earth incorporation can introduce localized 4f states that alter recombination processes and generate additional emission channels [42,49–52]. In ZnIn₂S₄, rare earth ions are expected to modify the electronic structure and defect environment, leading to changes in emission intensity, spectral position, and carrier lifetime [53–60]. Neodymium is especially attractive due to its characteristic intra-4f transitions, which produce stable luminescence in the visible and near-infrared regions [35]. Therefore, investigating Nd-doped ZnIn₂S₄ provides insight into host–activator interactions and supports the development of efficient optoelectronic materials for light-emitting and energy-related applications.

Experimental method

Photoluminescence (PL) measurements were carried out using a PL/PLE/Raman spectrometer device manufactured in Japan. The emission of the samples was studied using lasers with different wavelengths: 532 nm (Nd- YAG) and 785 nm. Photoluminescence from the sample was scattered by a grating (100 g/mm−1) monochromator MS 5207 I and MS 3704 I (SOL Instruments, Inc), detected by a CCD multiplier DU 491A-1.7.
ZnIn₂S₄ single crystals were obtained by gas phase transport. The initial Zn, In, S and Nd elements (all 99.9% pure) were synthesized as reaction products and placed in a transparent quartz ampoule, which was sealed at a pressure of 1.3 × 10⁻³ Pa. The ampoule was placed in a horizontal furnace, the growth zone was maintained at 940 °C, and the source zone was maintained at 830 °C. The transport process was carried out by diffusion, and the temperature was controlled by a platinum-rhodium thermocouple.

Results and discussion

In this work, the optical properties of Nd³⁺ ions in a chalcogenide matrix and the factors affecting the internal transitions of these ions were systematically investigated. The photoluminescence (FL) spectra of the Nd³⁺-doped ZnIn₂S₄ compound are given in figure 1. Spectral measurements were carried out in the wavelength range of 550–930 nm and three main emission peak groups were observed. These peaks are related to the characteristic 4f-4f ⁴G₅/₂ → ⁴I₉/₂, ⁴F₉/₂ → ⁴I₉/₂, ⁴F₃/₂ → ⁴I₉/₂ internal electronic transitions of Nd³⁺ ions and cover the regions of 584–610 nm, 667–687 nm,880–920 nm, respectively [21,35].

Figure 1. PL spectrum of Znİn2S4:Nd at room temperature

Initially, the transitions were observed as two, one and three narrow peaks, respectively. As a result of increasing the resolution of the diffraction grating, the presence of a fine structure in each of these peaks became clearly visible. This is due to the splitting of energy levels due to the influence of the internal electric field created by the crystal field (Stark effect). When neodymium ions are located in a chalcopyrite crystal, the electric field there (asymmetric local field) can split the energy levels of the ion.
Figures 2a, 2b and 2c show the fine structure and temperature dependence of the photoluminescence peaks in the wavelength regions of 584–610 nm, 667–687 nm and 880–920 nm. Accordingly, the first peak is split into eight, the second peak into six and the third peak into seven fine peaks. These observations are the result of the interaction of Nd³⁺ ions with local symmetry and defects in the crystal field. In particular, the presence of chalcogen vacancies and other structural defects in the material increases the depth of this splitting.

Figure 2. PL spectrum of ZnIn2S4:Nd at different temperature(1-50K, 2-300K)


In the next stage of the experiment, the effect of temperature on the photoluminescence peaks was investigated. Lowering the temperature reduces the number of phonons and weakens the radiationless relaxation processes, which resulted in further thinning of the peaks and an increase in the emission efficiency. All the observations noted indicate a high sensitivity of the energy levels of Nd³⁺ ions in the ZnIn₂S₄:Nd³⁺ system to both crystal field variations and temperature changes. These properties increase the importance of the material for potential laser, optoelectronic and other photonic applications.

Conclusion

Studies have shown that the fine structure of the photoluminescence peaks observed in ZnIn₂S₄ crystals doped with Nd³⁺ ions is due to the Stark effect induced by the crystal field. The separation of the peaks into multiple fine components reflects the effects of local symmetry violations and defects. Lowering the temperature led to a narrowing of the peaks and an increase in the emission efficiency. These features indicate the prospects of the ZnIn₂S₄:Nd³⁺ crystal for optoelectronics and photonic devices and open up the possibility of optimizing these properties in the future through ion concentration and crystal engineering.

References

1 S.G. Asadullayeva, N.A. Ismayilova, T.G. Naghiyev, Modern Physics Letters B 37(34) (2023) 2350166. https://doi.org/10.1142/S021798492350166X

2 A.I. Isayev,S.I. Mekhtiyeva, H.I. Mammadova et al. UNEC J. Eng. Appl. Sci. 4(1) (2024) 55. https://doi.org/10.61640/ujeas.2024.0505

3 S.G. Asadullayeva, Z.A. Jahangirli, T.G. Naghiyev, A.S. Abiyev, Curr. Appl. Phys. 76 (2025) 39. http://doi.org/10.1016/j.cap.2025.05.007

4 J. Li, Y. Lin, M. Zhang, Y. Peng, X. Wei, et al., J. Appl. Phys. 133 (2023) 105702. https://doi.org/10.1063/5.0136862

5 M. Yousaf, M.A. Saeed, A.R. Mat Isa, H.A. Rahnamaye Aliabad, and M.R. Sahar, Chin. Phys. Lett. 30 (2013) 077402. https://doi.org/10.1088/0256-307X/30/7/077402

6 E.M. Huseynov, T.G. Naghiyev, Applied Physics A 128(2) (2022) 115. https://doi.org/10.1007/s00339-022-05265-x

7 P. Rodríguez-Hern´andez, A. Mu˜noz, J. Gonz´alez, J.A. Sans, V.P. Cuenca-Gotor, J. Ib´a˜nez, C. Popescu, F.J. Manj´on, Phys. Chem. Chem. Phys. 23 (2021) 6841. https://doi.org/10.1039/D0CP06417C

8 O. Gomis, R. Vilaplana, F.J. Manj´on, D. Santamaría-P´erez, D. Errandonea, E. P´erezGonz´alez, J. L´opez-Solano, P. Rodríguez-Hern´andez, A. Mu˜noz, I.M. Tiginyanu, V.V. Ursaki, Mater. Res. Bull. 48 (2013) 2128. https://doi.org/10.1016/j.materresbull.2013.02.037

9 R.S. Madatov, F.G. Asadov, E.G. Asadov, T.G. Naghiyev, Journal of the Korean Physical Society 74 (2019) 508. https://doi.org/10.3938/jkps.74.508

10 Z.A. Jahangirli, S.G. Asadullayeva, I.R. Amiraslanov et al., Indian J. Phys. 99(6) (2025) 2087. https://doi.org/10.1007/s12648-024-03452-5

11 Q. Shah, G. Murtaza, M. Shafiq, A. Nicola, Chin. J. Phys. 85 (2023) 1. https://doi.org/10.1016/j.cjph.2023.05.016

12 W.-T. Kim, M.-S. Jin, S. Hyeon, Y.-G. Kim, B.- S. Park, Solid State Commun. 74 (1990) 123. https://doi.org/10.1016/0038-1098(90)90618-L

13 N.A Ismayilova, S.H. Jabarov, Ukrainian Journal of Physics 69 (2024) 754. https://doi.org/10.15407/ujpe69.10.754

14 T.G. Naghiyev, R.M. Rzayev, Modern Physics Letters B 35(31) (2021) 2150469. https://doi.org/10.1142/S0217984921504698

15 E.G. Asadov, O.B. Tagiev, G.S. Gadzhieva, A.H. Asadova, et al., Solid State Commun. 356 (2022) 114933. https://doi.org/10.1016/j.ssc.2022.114933

16 J. Li, M. Zhang, Y. Peng, X. We, et al., J. Appl. Phys. 133 (2023) 105702. https://doi.org/10.1063/5.0136862

17 N.A. Ismayilova, J Supercond Nov Magn 38 80 (2025). https://doi.org/10.1007/s10948-025-06920-z

18 Xiaoshu Jiang, Walter R.L. Lambrecht, Phys. Rev. B 69 (2004) 035201. https://doi.org/10.1103/PhysRevB.69.035201

19 O. Vigil, S. Lopez, E. Morris, F. Leccabue, J. Appl. Phys. 62 (1987) 653. https://doi.org/10.1063/1.339764

20 T.G. Naghiyev, U.R. Rzayev, E.M. Huseynov, I.T. Huseynov, S.H. Jabarov, UNEC J. Eng. Appl. Sci. 2(1) (2022) 85.

21 S.G. Asadullayeva, N.A. Ismayilova, Solid State Commun. 394 (2024) 115725. https://doi.org/10.1016/j.ssc.2024.115725

22 M. Yousaf, M.A. Saeed, A.R. Mat Isa, H.A. Rahnamaye Aliabad, and M.R. Sahar, Chin. Phys. Lett. 30(7) (2013) 077402. https://doi.org/10.1088/0256-307X/30/7/077402

23 O.B. Tagiyev, T.D. Ibragimov, E.G. Asadov, F.A. Kazimova and et al. J. Appl. Phys. 133 (2023)135103. https://doi.org/10.1063/5.0138667

24 R.Yang, L. Mei, Y. Fan, Q. Zhang, R. Zhu, R. Amal, Z. Yin, Z. Zeng, Small metod 5(2021) 2100887. https://doi.org/10.1002/smtd.202100887

25 N. Ismayilova, S Asadullayeva, Indian Journal of Physics 98(3) (2024) 1103. https://doi.org/10.1007/s12648-023-02858-x

26 L. Valdman, V. Mazanek, and P. Marvan, Adv. Opt. Mater. 9 (2021) 2100845. https://doi.org/10.1002/adom.202100845

27 G. Yadav, Md. Ahmaruzzaman, Inorganic Chemistry Communications 138 (2022) 109288. https://doi.org/10.1016/j.inoche.2022.109288

28 W.-K. Chong, B.-J. Ng, Y.J. Lee, L.-L. Tan, L.K. Putri et.al., Nat Commun 14 (2023) 7676. https://doi.org/10.1038/s41467-023-43331-x

29 S.G. Asadullayeva, R.A. Ahmedov, A.A. Hadieva et al. UNEC J. Eng. Appl. Sci. 3(2) (2023) 66. https://doi.org/10.61640/ujeas.2023.1209

30 S.G. Asadullayeva, Z.A. Jahangirli, T.G. Naghiyev, D.A. Mammadov, Phys. Status Solidi B 258(8) (2021) 2100101. https://doi.org/10.1002/pssb.202100101

31 G. Zhang, H. Wu, D. Chen, N. Li, Q. Xu, H. Li, J. He, Green Energy & Environment 7 (2022) 176. https://doi.org/10.1016/j.gee.2020.12.015

32 S.G. Asadullayeva, N.A. Ismayilova, E.H. Alizade, N.T. Mamedov, A.I. Bayramov, M.A. Musayev, I.I. Abbasov, Bull Mater Sci 47 (2024) 115. https://doi.org/10.1007/s12034-024-03197-1Sadhana(0123456789().,-volV)FT3](012345 6789().,-volV)

33 H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, and J. W. Chew, Adv. Mater. 30 (2018) 1704561. https://doi.org/10.1002/adma.201704561

34 S.G. Asadullayeva, N.A. Ismayilova, S.H. Jabarov, SOCAR Proceedings 3 (2024) 118. http://dx.doi.org/10.5510/OGP20240301001

35 S.G. Asadullayeva, Z.A. Jahangirli, Eur. Phys. J. B 98 (2025) 142. https://doi.org/10.1140/epjb/s10051-025-00990-7

36 G. Stamov, V.V. Zalamai, N.N. Syrbu, A.V. Tiron, J. Phys. Chem. Solids 136 (2020) 109016 . https://doi.org/10.1016/j.jpcs.2019.05.013

37 S. Shen, P. Guo, and L. Zhao, J. Solid State Chem. 184 (2011) 2250. https://doi.org/10.1016/j.jssc.2011.06.033

38 T.X. Wang, S.H. Xu, F.X. Yang, Mater. Lett. 83 (2012) 46. https://doi.org/10.1016/j.gee.2018.03.001

39 S.G. Asadullayeva, Z.A. Jahangirli, M.A. Musayev, Q.Y. Eyyubov, A.S. Abiyev, Phys. Solid State 67(6) (2025) 429. https://doi.org/10.1134/S1063783425601067

40 Y. Yan, Z. Chen, X. Cheng, W. Shi, Catalysts 13 (2023) 967. https://doi.org/10.3390/catal13060967

41 R.F. Babayeva, T.G. Naghiyev, Modern Physics Letters B 37(21) (2023) 2350058. https://doi.org/10.1142/S0217984923500586

42 G.S. Hadjieva, K.O. Taghiyev, E.G. Asadov, F.A. Kazimova, T.Sh Ibragimova, O. B. Tagiyev, Mod. Phys. Lett. B 34(31) (2020) 2050344. https://doi.org/10.1142/%20S0217984920503443

43 I.I. Aliyev, R.M. Rzayev, Kh.M. Hashimov, C.A. Ahmedova, T.G. Naghiyev, Modern Physics Letters B 38(25) (2024) 2450232. https://doi.org/10.1142/S0217984924502324

44 T.G. Naghiyev, R.F. Babayeva, Y.I. Aliyev, Eur. Phys. J. B 97 (2024) 86. https://doi.org/10.1140/epjb/s10051-024-00731-2

45 B.G. Tagiyev, O.B. Tagiyev, A.I. Mammadov, Vu Xuan Quang, T.G. Naghiyev, S.H. Jabarov, M.S. Leonenya, G.P. Yablonskii, N.T. Dang, Physica B: Condensed Matter 478 (2015) 58. https://doi.org/10.1016/j.physb.2015.08.061

46 R.S. Madatov, A.S. Alekperov, N.N. Gadzhieva, F.G. Asadov, Sh.A. Allahverdiev, E.G. Asadov, T.G. Naghiyev, International Journal of Modern Physics B 33(09) (2019) 1950066. https://doi.org/10.1142/S0217979219500668

47 T.G. Naghiyev, R.F. Babayeva, A.S. Abiyev, Eur. Phys. J. B 97 (2024) 131. https://doi.org/10.1140/epjb/s10051-024-00771-8

48 A.Sh. Abdinov, R.F. Babayeva, Y.I. Aliyev, International Journal of Modern Physics B 39(12) (2025) 2550089. https://doi.org/10.1142/S0217979225500894

49 A.Sh. Abdinov, R.F. Babaeva, A.T. Bagirova, R.M. Rzaev, Inorg. Mater. 42 (2006) 937. https://doi.org/10.1134/S0020168506090020

50 A.Sh. Abdinov, R.F. Babaeva, R.M. Rzaev, S.I. Amirova, Inorg. Mater. 48 (2012) 559. https://doi.org/10.1134/S0020168512060015

51 A.Sh. Abdinov, R.F. Babaeva, R.M. Rzaev, Inorg. Mater. 48 (2012) 781. https://doi.org/10.1134/S0020168512080018

52 R. Behjatmanesh-Ardakani, R. Rzayev, Chemical Review and Letters, 7(6) (2024) 1022. https://doi.org/10.22034/crl.2024.474971.1412

53 K.T. Dovranov, G.T. Imanova, V.V. Loboda, M.T. Normuradov, I.R. Bekpulatov, UNEC J. Eng. Appl. Sci. 4(2) (2024) 37. https://doi.org/10.61640/ujeas.2024.1204

54 A.Sh. Abdinov, R.F. Babayeva, S.I. Amirova, N.A. Rahimova, E.A. Rasulov, UNEC J. Eng. Appl. Sci. 5(1) (2025) 55. https://doi.org/10.61640/ujeas.2025.0506

55 A.I. Isayev, S.I. Mekhtiyeva, H.I. Mammadova, R.I. Alekberov, Q.M. Ahmadov, N.N. Eminova, A.Ch. Mammadova, L.A. Aliyeva, L.V. Afandiyeva, R.F. Sadikhli, UNEC J. Eng. Appl. Sci. 4(1) (2024) 55. https://doi.org/10.61640/ujeas.2024.0505

56 M.A. Jafarov, V.M. Salmanov, A.H. Huseynov, R.M. Mamedov, T.A. Mamedova, F.S. Ahmedova, A.B. Aliyeva, UNEC J. Eng. Appl. Sci. 3(2) (2023) 54. https://doi.org/10.61640/ujeas.2023.1207

57 A.O. Dashdemirov, A.S. Alekperov, Y.I. Aliyev, UNEC J. Eng. Appl. Sci. 3(1) (2023) 28. https://doi.org/10.61640/ujeas.2023.0505

58 T.G. Naghiyev, E.M. Huseynov, UNEC J. Eng. Appl. Sci. 3(1) 2023 10. https://doi.org/10.61640/ujeas.2023.0502

59 T.D. Ibragimov, A.M. Hashimov, G.B. Ibragimov, R.M. Rzayev, Fullerenes, Nanotubes and Carbon Nanostructures 29(12) (2021) 951. https://doi.org/10.1080/1536383X.2021.1920579

60 F. Behmagham, S. Arshadi, E. Vessally, T.G. Naghiyev, R. Rzayev, Dharmesh Sur, Subbulakshmi Ganesan, Computational and Theoretical Chemistry 1243 (2025) 114976. https://doi.org/10.1016/j.comptc.2024.114976

About this article

Cite this article

S.G. Asadullayeva, Sh.Sh. Amirov, Photoluminescence properties and the influence of the Stark effect of a ZnIn₂S₄ crystal doped with Nd, UNEC J. Eng. Appl. Sci. 5(2) (2025) 104-109. https://doi.org/10.61640/ujeas.2025.1209

  • Received05 Jun 2025
  • Accepted14 Dec 2025
  • Revised25 Aug 2025
  • Published30 Dec 2025

Share this article

Anyone you share the following link with will be able to read this content:

Keywords

  • photoluminescence
  • chalcogenide
  • rare-earth doping
  • Stark effect
Download PDF Photoluminescence properties and the influence of the Stark effect of a ZnIn₂S₄ crystal doped with Nd
  1. S.G. Asadullayeva, N.A. Ismayilova, T.G. Naghiyev, Modern Physics Letters B 37(34) (2023) 2350166. https://doi.org/10.1142/S021798492350166X

  2. A.I. Isayev,S.I. Mekhtiyeva, H.I. Mammadova et al. UNEC J. Eng. Appl. Sci. 4(1) (2024) 55. https://doi.org/10.61640/ujeas.2024.0505

  3. S.G. Asadullayeva, Z.A. Jahangirli, T.G. Naghiyev, A.S. Abiyev, Curr. Appl. Phys. 76 (2025) 39. http://doi.org/10.1016/j.cap.2025.05.007

  4. J. Li, Y. Lin, M. Zhang, Y. Peng, X. Wei, et al., J. Appl. Phys. 133 (2023) 105702. https://doi.org/10.1063/5.0136862

  5. M. Yousaf, M.A. Saeed, A.R. Mat Isa, H.A. Rahnamaye Aliabad, and M.R. Sahar, Chin. Phys. Lett. 30 (2013) 077402. https://doi.org/10.1088/0256-307X/30/7/077402

  6. E.M. Huseynov, T.G. Naghiyev, Applied Physics A 128(2) (2022) 115. https://doi.org/10.1007/s00339-022-05265-x

  7. P. Rodríguez-Hern´andez, A. Mu˜noz, J. Gonz´alez, J.A. Sans, V.P. Cuenca-Gotor, J. Ib´a˜nez, C. Popescu, F.J. Manj´on, Phys. Chem. Chem. Phys. 23 (2021) 6841. https://doi.org/10.1039/D0CP06417C

  8. O. Gomis, R. Vilaplana, F.J. Manj´on, D. Santamaría-P´erez, D. Errandonea, E. P´erezGonz´alez, J. L´opez-Solano, P. Rodríguez-Hern´andez, A. Mu˜noz, I.M. Tiginyanu, V.V. Ursaki, Mater. Res. Bull. 48 (2013) 2128. https://doi.org/10.1016/j.materresbull.2013.02.037

  9. R.S. Madatov, F.G. Asadov, E.G. Asadov, T.G. Naghiyev, Journal of the Korean Physical Society 74 (2019) 508. https://doi.org/10.3938/jkps.74.508

  10. Z.A. Jahangirli, S.G. Asadullayeva, I.R. Amiraslanov et al., Indian J. Phys. 99(6) (2025) 2087. https://doi.org/10.1007/s12648-024-03452-5

  11. Q. Shah, G. Murtaza, M. Shafiq, A. Nicola, Chin. J. Phys. 85 (2023) 1. https://doi.org/10.1016/j.cjph.2023.05.016

  12. W.-T. Kim, M.-S. Jin, S. Hyeon, Y.-G. Kim, B.- S. Park, Solid State Commun. 74 (1990) 123. https://doi.org/10.1016/0038-1098(90)90618-L

  13. N.A Ismayilova, S.H. Jabarov, Ukrainian Journal of Physics 69 (2024) 754. https://doi.org/10.15407/ujpe69.10.754

  14. T.G. Naghiyev, R.M. Rzayev, Modern Physics Letters B 35(31) (2021) 2150469. https://doi.org/10.1142/S0217984921504698

  15. E.G. Asadov, O.B. Tagiev, G.S. Gadzhieva, A.H. Asadova, et al., Solid State Commun. 356 (2022) 114933. https://doi.org/10.1016/j.ssc.2022.114933

  16. J. Li, M. Zhang, Y. Peng, X. We, et al., J. Appl. Phys. 133 (2023) 105702. https://doi.org/10.1063/5.0136862

  17. N.A. Ismayilova, J Supercond Nov Magn 38 80 (2025). https://doi.org/10.1007/s10948-025-06920-z

  18. Xiaoshu Jiang, Walter R.L. Lambrecht, Phys. Rev. B 69 (2004) 035201. https://doi.org/10.1103/PhysRevB.69.035201

  19. O. Vigil, S. Lopez, E. Morris, F. Leccabue, J. Appl. Phys. 62 (1987) 653. https://doi.org/10.1063/1.339764

  20. T.G. Naghiyev, U.R. Rzayev, E.M. Huseynov, I.T. Huseynov, S.H. Jabarov, UNEC J. Eng. Appl. Sci. 2(1) (2022) 85.

  21. S.G. Asadullayeva, N.A. Ismayilova, Solid State Commun. 394 (2024) 115725. https://doi.org/10.1016/j.ssc.2024.115725

  22. M. Yousaf, M.A. Saeed, A.R. Mat Isa, H.A. Rahnamaye Aliabad, and M.R. Sahar, Chin. Phys. Lett. 30(7) (2013) 077402. https://doi.org/10.1088/0256-307X/30/7/077402

  23. O.B. Tagiyev, T.D. Ibragimov, E.G. Asadov, F.A. Kazimova and et al. J. Appl. Phys. 133 (2023)135103. https://doi.org/10.1063/5.0138667

  24. R.Yang, L. Mei, Y. Fan, Q. Zhang, R. Zhu, R. Amal, Z. Yin, Z. Zeng, Small metod 5(2021) 2100887. https://doi.org/10.1002/smtd.202100887

  25. N. Ismayilova, S Asadullayeva, Indian Journal of Physics 98(3) (2024) 1103. https://doi.org/10.1007/s12648-023-02858-x

  26. L. Valdman, V. Mazanek, and P. Marvan, Adv. Opt. Mater. 9 (2021) 2100845. https://doi.org/10.1002/adom.202100845

  27. G. Yadav, Md. Ahmaruzzaman, Inorganic Chemistry Communications 138 (2022) 109288. https://doi.org/10.1016/j.inoche.2022.109288

  28. W.-K. Chong, B.-J. Ng, Y.J. Lee, L.-L. Tan, L.K. Putri et.al., Nat Commun 14 (2023) 7676. https://doi.org/10.1038/s41467-023-43331-x

  29. S.G. Asadullayeva, R.A. Ahmedov, A.A. Hadieva et al. UNEC J. Eng. Appl. Sci. 3(2) (2023) 66. https://doi.org/10.61640/ujeas.2023.1209

  30. S.G. Asadullayeva, Z.A. Jahangirli, T.G. Naghiyev, D.A. Mammadov, Phys. Status Solidi B 258(8) (2021) 2100101. https://doi.org/10.1002/pssb.202100101

  31. G. Zhang, H. Wu, D. Chen, N. Li, Q. Xu, H. Li, J. He, Green Energy & Environment 7 (2022) 176. https://doi.org/10.1016/j.gee.2020.12.015

  32. S.G. Asadullayeva, N.A. Ismayilova, E.H. Alizade, N.T. Mamedov, A.I. Bayramov, M.A. Musayev, I.I. Abbasov, Bull Mater Sci 47 (2024) 115. https://doi.org/10.1007/s12034-024-03197-1Sadhana(0123456789().,-volV)FT3](012345 6789().,-volV)

  33. H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, and J. W. Chew, Adv. Mater. 30 (2018) 1704561. https://doi.org/10.1002/adma.201704561

  34. S.G. Asadullayeva, N.A. Ismayilova, S.H. Jabarov, SOCAR Proceedings 3 (2024) 118. http://dx.doi.org/10.5510/OGP20240301001

  35. S.G. Asadullayeva, Z.A. Jahangirli, Eur. Phys. J. B 98 (2025) 142. https://doi.org/10.1140/epjb/s10051-025-00990-7

  36. G. Stamov, V.V. Zalamai, N.N. Syrbu, A.V. Tiron, J. Phys. Chem. Solids 136 (2020) 109016 . https://doi.org/10.1016/j.jpcs.2019.05.013

  37. S. Shen, P. Guo, and L. Zhao, J. Solid State Chem. 184 (2011) 2250. https://doi.org/10.1016/j.jssc.2011.06.033

  38. T.X. Wang, S.H. Xu, F.X. Yang, Mater. Lett. 83 (2012) 46. https://doi.org/10.1016/j.gee.2018.03.001

  39. S.G. Asadullayeva, Z.A. Jahangirli, M.A. Musayev, Q.Y. Eyyubov, A.S. Abiyev, Phys. Solid State 67(6) (2025) 429. https://doi.org/10.1134/S1063783425601067

  40. Y. Yan, Z. Chen, X. Cheng, W. Shi, Catalysts 13 (2023) 967. https://doi.org/10.3390/catal13060967

  41. R.F. Babayeva, T.G. Naghiyev, Modern Physics Letters B 37(21) (2023) 2350058. https://doi.org/10.1142/S0217984923500586

  42. G.S. Hadjieva, K.O. Taghiyev, E.G. Asadov, F.A. Kazimova, T.Sh Ibragimova, O. B. Tagiyev, Mod. Phys. Lett. B 34(31) (2020) 2050344. https://doi.org/10.1142/%20S0217984920503443

  43. I.I. Aliyev, R.M. Rzayev, Kh.M. Hashimov, C.A. Ahmedova, T.G. Naghiyev, Modern Physics Letters B 38(25) (2024) 2450232. https://doi.org/10.1142/S0217984924502324

  44. T.G. Naghiyev, R.F. Babayeva, Y.I. Aliyev, Eur. Phys. J. B 97 (2024) 86. https://doi.org/10.1140/epjb/s10051-024-00731-2

  45. B.G. Tagiyev, O.B. Tagiyev, A.I. Mammadov, Vu Xuan Quang, T.G. Naghiyev, S.H. Jabarov, M.S. Leonenya, G.P. Yablonskii, N.T. Dang, Physica B: Condensed Matter 478 (2015) 58. https://doi.org/10.1016/j.physb.2015.08.061

  46. R.S. Madatov, A.S. Alekperov, N.N. Gadzhieva, F.G. Asadov, Sh.A. Allahverdiev, E.G. Asadov, T.G. Naghiyev, International Journal of Modern Physics B 33(09) (2019) 1950066. https://doi.org/10.1142/S0217979219500668

  47. T.G. Naghiyev, R.F. Babayeva, A.S. Abiyev, Eur. Phys. J. B 97 (2024) 131. https://doi.org/10.1140/epjb/s10051-024-00771-8

  48. A.Sh. Abdinov, R.F. Babayeva, Y.I. Aliyev, International Journal of Modern Physics B 39(12) (2025) 2550089. https://doi.org/10.1142/S0217979225500894

  49. A.Sh. Abdinov, R.F. Babaeva, A.T. Bagirova, R.M. Rzaev, Inorg. Mater. 42 (2006) 937. https://doi.org/10.1134/S0020168506090020

  50. A.Sh. Abdinov, R.F. Babaeva, R.M. Rzaev, S.I. Amirova, Inorg. Mater. 48 (2012) 559. https://doi.org/10.1134/S0020168512060015

  51. A.Sh. Abdinov, R.F. Babaeva, R.M. Rzaev, Inorg. Mater. 48 (2012) 781. https://doi.org/10.1134/S0020168512080018

  52. R. Behjatmanesh-Ardakani, R. Rzayev, Chemical Review and Letters, 7(6) (2024) 1022. https://doi.org/10.22034/crl.2024.474971.1412

  53. K.T. Dovranov, G.T. Imanova, V.V. Loboda, M.T. Normuradov, I.R. Bekpulatov, UNEC J. Eng. Appl. Sci. 4(2) (2024) 37. https://doi.org/10.61640/ujeas.2024.1204

  54. A.Sh. Abdinov, R.F. Babayeva, S.I. Amirova, N.A. Rahimova, E.A. Rasulov, UNEC J. Eng. Appl. Sci. 5(1) (2025) 55. https://doi.org/10.61640/ujeas.2025.0506

  55. A.I. Isayev, S.I. Mekhtiyeva, H.I. Mammadova, R.I. Alekberov, Q.M. Ahmadov, N.N. Eminova, A.Ch. Mammadova, L.A. Aliyeva, L.V. Afandiyeva, R.F. Sadikhli, UNEC J. Eng. Appl. Sci. 4(1) (2024) 55. https://doi.org/10.61640/ujeas.2024.0505

  56. M.A. Jafarov, V.M. Salmanov, A.H. Huseynov, R.M. Mamedov, T.A. Mamedova, F.S. Ahmedova, A.B. Aliyeva, UNEC J. Eng. Appl. Sci. 3(2) (2023) 54. https://doi.org/10.61640/ujeas.2023.1207

  57. A.O. Dashdemirov, A.S. Alekperov, Y.I. Aliyev, UNEC J. Eng. Appl. Sci. 3(1) (2023) 28. https://doi.org/10.61640/ujeas.2023.0505

  58. T.G. Naghiyev, E.M. Huseynov, UNEC J. Eng. Appl. Sci. 3(1) 2023 10. https://doi.org/10.61640/ujeas.2023.0502

  59. T.D. Ibragimov, A.M. Hashimov, G.B. Ibragimov, R.M. Rzayev, Fullerenes, Nanotubes and Carbon Nanostructures 29(12) (2021) 951. https://doi.org/10.1080/1536383X.2021.1920579

  60. F. Behmagham, S. Arshadi, E. Vessally, T.G. Naghiyev, R. Rzayev, Dharmesh Sur, Subbulakshmi Ganesan, Computational and Theoretical Chemistry 1243 (2025) 114976. https://doi.org/10.1016/j.comptc.2024.114976