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Abstract 

          There are a sufficient number of theories about the nature of physiological effect, such 

us receptor, neural, biochemical, physicochemical to quantum. All of them are true, because 

nature is a much more complex system than we can imagine. In this article we try to open the 

curtain on the nature physiological activity in the framework of synthesized by us - (Z) -N, N-

dimethyl-2- (perfluorophenyl) -2- (2-phenylhydrazinylidine) acetamide, using the modern 

capabilities of computer programs. 
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          1. Introduction 

 

          What is physiological activity by the chemist's point? It is the ability to interact with a 

biological target. What is a biological target? A polymolecular system that has a certain 

structure and composition, depending on which they can enter certain interactions (reactions) 

with chemical compounds. Thus, the assessment of possible interactions between chemical 

compounds and proteins is an important task in the process of studying the physiological 

activity of substances. One of the possible ways to solve this problem is using QSAR models 

to predict the endpoints of counteraction. GUSAR software was developed to create 

QSAR/QSPR models on the basis of the appropriate training sets represented as SD file 

contained data about chemical structures and endpoint in quantitative terms. Three nearest 

neighbours from the training set are calculated for each test chemical compound using a 

similarity value. The average similarity of three nearest neighbours is used for assessment of 

the applicability domain (AD) of the model. 

 

          2. Methods. 

Quantitative prediction of counter attack profiles for chemical compounds 

 Data on the chemical structure and quantitative endpoints (IC50, or concentration of 

half-maximal inhibition is an indicator of the effectiveness of a ligand in inhibiting 

biochemical or biological interactions. IC50 is a quantitative indicator that shows how much 

ligand-inhibitor is needed to inhibit a biological process by 50%. Ki is a constant inhibition, a 

coefficient characterizing the affinity of a ligand for a cellular receptor or another protein or 

DNA and an activation constant- Kact) for approximately 4000 chemical compounds 
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interacting with 18 antibodies to proteins (13 receptors, 2 enzymes and 3 carriers) were 

collected from various literature sources [1]. Each set was randomly divided into training and 

test sets in a ratio of 80% to 20%, respectively. The test suites were used for external 

validation of the QSAR models generated from the training suites. The prediction coverage 

for all test sets exceeded 95%, and for half of the test sets it was 100%. The prediction 

accuracy for the 32 endpoints, based on external test sets, was typically in the range of R2
test = 

0.6–0.9; three sets of tests had lower test R 2 values, namely 0.55-0.6. The proposed approach 

showed reasonable prediction accuracy for 91% of antibody endpoints and high coverage for 

all external test sets [2]. Based on the created models, a freely available online service was 

developed for in silico prediction of 32 endpoints of counteraction: 

http://www.pharmaexpert.ru/GUSAR/antitargets.html. 

 

Activity Name 
End- 

point 

Number of 

compounds 
Training set / 

Test set 

Number 

of 

models 

R2 

training 

set 

Q2 

training 

set 

R2 

test 

set 

Coverage,

% 

5-hydroxytryptamine 1B receptor antagonist IC50 297 / 74 8 0.83 0.79 0.67 100.0 

5-hydroxytryptamine 1B receptor antagonist Ki   266 / 66 7 0.73 0.66 0.72 100.0 

5-hydroxytryptamine 2A receptor antagonist IC50 555 / 143 13 0.83 0.78 0.71 98.6 

5-hydroxytryptamine 2A receptor antagonist Ki   1010 / 252 13 0.72 0.65 0.59 99.6 

5-hydroxytryptamine 2C receptor antagonist IC50 128 / 32 18 0.77 0.73 0.58 100.0 

5-hydroxytryptamine 2C receptor antagonist Ki   487 / 121 14 0.74 0.66 0.62 99.2 

alpha1a adrenergic receptor antagonist IC50 438 / 111 16 0.79 0.73 0.72 98.2 

alpha1a adrenergic receptor antagonist Ki   1366 / 344 5 0.83 0.79 0.80 97.0 

alpha1b adrenergic receptor antagonist Ki   410 / 102 17 0.73 0.66 0.63 100.0 

alpha-2A adrenergic receptor antagonist IC50 109 / 27 16 0.88 0.84 0.75 100.0 

alpha-2A adrenergic receptor antagonist Ki   525 / 131 17 0.84 0.79 0.77 99.2 

amine oxidase [flavin-containing] A inhibitor IC50 286 / 71 9 0.80 0.75 0.72 100.0 

amine oxidase [flavin-containing] A inhibitor Ki   60 / 15 5 0.73 0.62 0.64 100.0 

androgen receptor antagonist IC50 116 / 29 8 0.79 0.73 0.67 100.0 

carbonic anhydrase II activator Kact 104 / 26 20 0.92 0.90 0.91 100.0 

carbonic anhydrase I activator Kact 108 / 27 12 0.98 0.97 0.93 100.0 

carbonic anhydrase I inhibitor Ki   935 / 234 11 0.91 0.86 0.86 98.3 

carbonic anhydrase II inhibitor IC50 866 / 217 7 0.87 0.79 0.76 98.6 

d(1A) dopamine receptor antagonist IC50 126 / 31 11 0.76 0.72 0.80 100.0 

d(1A) dopamine receptor antagonist Ki   291 / 73 10 0.72 0.66 0.57 100.0 

d3 dopamine receptor antagonist Ki   822 / 206 9 0.73 0.66 0.62 98.0 

delta-type opioid receptor antagonist Ki   1044 / 261 16 0.75 0.70 0.65 98.5 

estrogen receptor antagonist IC50 402 / 100 4 0.66 0.61 0.70 97.0 

estrogen receptor antagonist Ki   255 / 68 13 0.76 0.71 0.70 100.0 

kappa-type opioid receptor antagonist Ki   884 / 221 7 0.74 0.67 0.65 100.0 

mu-type opioid receptor antagonist IC50 545 / 136 7 0.67 0.61 0.70 97.8 

mu-type opioid receptor antagonist Ki   1354 / 338 4 0.69 0.62 0.60 96.7 

sodium- and chloride-dependent GABA transporter 1 
antagonist 

IC50 75 / 19 10 0.9 0.86 0.89 100.0 

sodium-dependent dopamine transporter antagonist IC50 920 / 230 5 0.7 0.65 0.67 98.3 

sodium-dependent dopamine transporter antagonist Ki   655 / 164 7 0.77 0.69 0.64 100.0 

sodium-dependent serotonin transporter antagonist IC50 796 / 199 7 0.8 0.75 0.69 97.5 

sodium-dependent serotonin transporter antagonist Ki   823 / 206 2 0.72 0.65 0.61 95.6 

 

Table1.  Quantitative prediction of antitarget interaction profiles for chemical compounds 
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           3. Results and discussions. 

 

Quantitative prediction of counter attack profiles for (Z)-N, N-dimethyl-2-

(perfluorophenyl)-2-(2-phenylhydrazinylidene) acetamide. 

           For the first time, by means of a tandem reaction, under the conditions of a catalytic 

olefination reaction, we have synthesized (Z)-N, N-dimethyl-2-(perfluorophenyl)-2-(2- 

phenyldiazenyl) acetamide. 

 

 
                                                                                                            a) 

a) (Z)-N, N-dimethyl-2-(perfluorophenyl)-2-(2- phenyldiazenyl) acetamide 

               

          The structural features of this compound [3] have been studied. 

           In order to investigate possible interactions between (Z)-N, N-dimethyl-2-

(perfluorophenyl)-2-(2- phenyldiazenyl) acetamide and antibody proteins, we used QSAR 

models to predict counteraction endpoints. Table 2 shows the quantitative prediction data of 

the counter attack profiles for (Z)-N, N-dimethyl-2-(perfluorophenyl)-2-(2-

phenylhydrazinylidine) acetamide. 

           In medicine, have developed and used compounds that change the activity of enzymes 

in order to regulate the rate of metabolic reactions and reduce the synthesis of certain 

substances in the body are actively developed and used (antagonists, inhibitors, activators and 

inactivators, etc.). 

          An antagonist (receptor antagonist) in biochemistry and pharmacology is a subtype of 

ligands for cellular receptors. A ligand with receptor antagonist properties is a ligand that 

blocks, reduces or prevents the physiological effects caused by the binding of an agonist 

(including an endogenous agonist) to a receptor. At the same time, he himself is not obliged 

(although he can) to produce any physiological effects due to his binding to the receptor (and 

according to the strict definition, which implies and includes only neutral antagonists, he 

should not even produce any physiological effects by itself [4]. Suppression of enzyme 

activity is usually called inhibition, but this is not always correct. An inhibitor is a substance 

that causes a specific decrease in enzyme activity [5]. Enzyme activators are substances that 

increase the rate of an enzymatic reaction [6]. 

 

Activity 
Prediction Value, -

Log10(Value), Mole 
Applicability Domain 

5-hydroxytryptamine 1B receptor antagonist IC50 6,698 Out of AD 

5-hydroxytryptamine 1B receptor antagonist Ki 6,205 In AD 

5-hydroxytryptamine 2A receptor antagonist IC50 7,425 Out of AD 

5-hydroxytryptamine 2A receptor antagonist Ki 6,824 Out of AD 

5-hydroxytryptamine 2C receptor antagonist IC50 6,862 In AD 

5-hydroxytryptamine 2C receptor antagonist Ki 7,849 In AD 

alpha1a adrenergic receptor antagonist IC50 5,708 Out of AD 

alpha1a adrenergic receptor antagonist Ki 5,584 Out of AD 

alpha1b adrenergic receptor antagonist Ki 5,965 Out of AD 

Alpha-2A adrenergic receptor antagonist IC50 4,770 In AD 

Alpha-2A adrenergic receptor antagonist Ki 5,627 In AD 

amine oxidase [flavin-containing] A inhibitor IC50 5,677 In AD 
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amine oxidase [flavin-containing] A inhibitor Ki 5,455 In AD 

androgen receptor antagonist IC50 5,578 In AD 

carbonic anhydrase I activator Kact 7,495 In AD 

carbonic anhydrase I inhibitor Ki 6,469 In AD 

Carbonic anhydrase 2 activator Kact 7,537 In AD 

carbonic anhydrase II inhibitor Ki 7,689 In AD 

D(1A) dopamine receptor antagonist IC50 5,300 In AD 

D(1A) dopamine receptor antagonist Ki 6,054 In AD 

D3 dopamine receptor antagonist Ki 6,214 Out of AD 

delta-type opioid receptor antagonist Ki 6,358 Out of AD 

estrogen receptor antagonist IC50 4,985 In AD 

estrogen receptor antagonist Ki 5,391 In AD 

kappa-type opioid receptor antagonist Ki 6,127 Out of AD 

mu-type opioid receptor antagonist IC50 5,508 Out of AD 

mu-type opioid receptor antagonist Ki 7,001 Out of AD 

sodium- and chloride-dependent GABA transporter 1 antagonist IC50 4,606 In AD 

sodium-dependent dopamine transporter antagonist IC50 6,337 Out of AD 

sodium-dependent dopamine transporter antagonist Ki 5,704 In AD 

sodium-dependent serotonin transporter antagonist IC50 5,509 In AD 

sodium-dependent serotonin transporter antagonist Ki 6,379 Out of AD 

 
 

Table 2.  Quantitative prediction of antitarget interaction profiles for (Z)-N, N-dimethyl-2-

(perfluorophenyl)-2-(2-phenylhydrazinylidene) acetamide. 

 
*in AD - compound falls in the applicability domain of the model 
*out of AD - compound is out of the applicability domain of the model 

            

           The total number of antitarget(s): 7 

           Analysis of Table 2 demonstrates that for a given compound, seven counteractions fall 

within the scope of the model. For (Z) -N, N-dimethyl-2- (perfluorophenyl) -2- (2-

phenylhydrazinylidine) acetamide, based on the GUSAR program, it is predicted: 

1. It is a 5-hydroxytryptamine receptor antagonist. 5-HT antagonists are a subtype of 

serotonin receptors, these are many chemical substances and drugs, in particular, some 

beta-blockers, some typical and atypical antipsychotics, some anti-migraine [7-12]. 

2. The second important effect is an antagonist of alpha-2A adrenergic receptors. It is known 

that direct antagonists of presynaptic alpha-2-adrenergic receptors mianserin and 

mirtazapine are widely used as antidepressants [13]. 

3. The next is the androgen receptor antagonist. Androgen receptor antagonists are often 

used in the treatment of diseases caused by excess androgens, such as prostate cancer. 

Compounds that are full or partial antagonists of androgen receptors are called 

antiandrogens. Complete AR antagonists are, for example, the non-steroidal compounds 

hydroxyflutamide, nilutamide, and bicalutamide [14-17]. 

4. Dopamine receptor antagonist. Compounds with similar effects are known as anti-

dopaminergic and are a type of drug that blocks dopamine receptors. Most antipsychotics 

are dopamine antagonists, and as such they have found use in the treatment of 

schizophrenia, bipolar disorder, and stimulant psychosis [18]. 

5. Estrogen receptor antagonists. Most often, these are drugs that block estrogen receptors. 

Estrogen receptor antagonists are commonly used in breast cancer therapy, as androgen 

receptor antagonists are used in prostate cancer therapy as shown by Harvison et al [26]]. 



U.F.Askerova: Quantitative prediction of counter attack profiles for (Z) -N, N-dimethyl… 

 62 

Antiestrogens, also known as estrogen antagonists or estrogen blockers, are a class of 

drugs that prevent estrogens such as estradiol from mediating their biological effects in the 

body [20-24]. 

6. Further, an inhibitor of the enzyme amine oxidase (flavin-containing). Monoamine 

oxidase inhibitors are biologically active substances that can inhibit the enzyme 

monoamine oxidase contained in nerve endings, preventing this enzyme from destroying 

various monoamines (serotonin, norepinephrine, dopamine, phenylethylamine, 

tryptamines, octopamine) and thereby increasing their concentration in the synaptic cleft. 

For this reason, for medical purposes, these substances are used mainly as antidepressants, 

as well as in the treatment of parkinsonism and narcolepsy [25]. 

7. Activator and inhibitor of carbonic anhydrase. This enzyme is known as a substance that 

acts as a catalyst in living organisms to help speed up chemical reactions as shown by 

Harvison et al [26]. Carbonic anhydrase is one of the important enzymes found in 

erythrocytes, gastric mucosa, pancreatic cells, and even in the renal tubules [27]. The main 

role of carbonic anhydrase in the human body is to catalyze the conversion of carbon 

dioxide to carbonic acid and vice versa. However, it can also help with the transport of 

CO2 in the blood, which in turn promotes respiration. It may even participate in the 

formation of hydrochloric acid in the stomach as shown by Harvison et al [26]. Thus, the 

role of carbonic anhydrase depends on where it is located in the body. Carbonic anhydrase 

inhibitors (CAI), used both systemically and topically, effectively reduce intraocular 

pressure. Unlike systemic CAI, 2% dorozolamide and 1% brinzolamide, penetrating deep 

into the tissues of the eye, do not lead to systemic effects, and therefore these drugs are 

widely used in the treatment of glaucoma [28]. 

 
           4. Сonclusion  

           

           The results show that seven antitargets are predicted for (Z) -N, N-dimethyl-2- 

(perfluorophenyl) -2- (2-phenylhydrazinylidine) acetamide. It once again confirms the fact 

that QSAR models can be successfully used to filter chemical compounds using the correction 

value estimated by taking an average of three chemicals values from the training set that the 

most similar to the chemical under prediction. Thus, without spending quite a lot of time and 

resources on preclinical studies, can be to conduct an initial screening of the synthesized 

compound in order to increase the efficiency of the search for drugs with the desired 

pharmacological effects. 

            

 This work was performed under the support of the Science Development Foundation 

under the President of the Republic of Azerbaijan (grant no. EIF-BGM-4- RFTF-1/2017-

21/13/4). 
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