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         Abstract 

         In this study, the buckling behavior of carbon nanotube (CNT) reinforced polymer 

rectangular plates in thermal environments under in-plane compressive load in the 

longitudinal direction is investigated. First, the micromechanical properties of polymers 

reinforced with carbon nanotubes are modeled. After establishing the constitutive 

relationships of nanocomposite plates with temperature-dependent material properties, based 

on the Kirchhoff-Love assumption, the stability and compatibility equations are derived. By 

choosing the approximation functions for simply-supported boundary conditions, the basic 

diferantial equations are solved, and a closed-form solution is obtained for the critical load in 

thermal environments. Based on this expression, the minimum value of the dimensionless 

critical load is obtained numerically depending on the buckling mode. Numerical analysis are 

performed for different temperature, volume fractions and CNT patterns. 
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         1. Introduction 

 

    The groundbreaking paper on carbon nanotubes (CNTs) by Iijima in 1991 is considered 

a major breakthrough in science. This discovery paved the way for the use of CNTs in many 

applications, with their outstanding mechanical, electrical and thermal properties. CNTs can 

be classified into two types: single-walled carbon nanotubes (SWCNTs) and multi-walled 

carbon nanotubes (MWCNTs) [1,2]. It should be emphasized that CNTs with a radius of 1-2 

nm have the same elastic properties with a Young's modulus of about 1 TPa and a shear 

modulus of about 0.45 TPa [3]. Many studies have been conducted on the superior electrical, 

optical, mechanical and thermal properties of CNTs [4,5]. For decades, fiber reinforcements 

have been used to achieve high specific strength and stiffness in weight-sensitive structural 

applications such as composite materials, marine, construction, mechanical, automotive and 

aircraft structures. However, this reinforcement had some disadvantages as it increased the 

weight of structural elements. With the discovery of carbon nanotubes, this disadvantage 

began to disappear. It has been scientifically proven that the discovery of CNT and its 

reinforcement into the matrix significantly improves the thermal and mechanical properties of 

the composites [6-9]. 

    These developments have led to the proposition of a new type of CNT-reinforced 
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composite material that has attracted increasing attention [10]. Inspired by the concept of 

functionally graded materials, CNT reinforced composites are a functionally graded 

nanocomposite model. CNTs are uniaxially strengthened, aligned in the axial direction, and 

the material properties are graded in the thickness direction, forming a reinforced FG-CNT 

composite [11]. The FG-CNT reinforced composites are the advanced composite materials 

that forms structural components such as beams, plates or shells. The study of the mechanical 

behavior FG-CNT reinforced composite structural elements have always been the focus of 

attention of researchers. For example, thermal buckling and post-buckling behavior of FG-

CNT reinforced composite plates exposed to in-plane heat is investigated by Shen and Zhang 

[12]. The same methodology was extended by Shen [13] to study FG-CNT patterned shell 

problems. The finite element method is used by Zhu et al. [14] to examine the static and free 

vibration of FG-CNT reinforced composite plates. Free vibration analysis of functionally 

graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in 

thermal environment is performed in the study of Lei et al. [15]. Static analysis of CNT-

reinforced composite rectangular plates bonded to thin piezoelectric layers exposed to thermal 

load and/or electric fields was performed by Alibeigloo [16]. Zhang et al. [17] used the Ritz 

method to examine the free vibration of FD-CNT reinforced composite plate problem. 

Sofiyev et al. [18-20] investigated buckling behaviors of various FG-CNT reinforced 

structural members under different loading conditions.  

    Therefore, it is necessary to examine the buckling problem of rectangular plates which is 

one of the structural elements composed of FG-CNT patterned polymers, to provide more 

useful parameters for successful engineering practice. The literature review reveals that the 

buckling problem of functionally graded carbon nanotube reinforced rectangular plates in 

thermal environments under compressive load has not been sufficiently studied. In the study, 

this subject will be discussed in detail. 

 

 2. Formulation of problem 

 

  In Figure 1, the selected Oxyz  coordinate system is presented on the midplane of the 

CNT reinforced rectangular plate with side lengths a  and b , and thickness h . Here, while 

the x  and y  axes are oriented in the longitudinal and transverse directions, the z  axis is 

normal to the xy  plane and points inwards. The displacements along the ,x y  and z  axes are 

denoted by ,u v  and w  respectively. The material properties of the nanocomposite plate are 

dependent of location ( 1 /z z h ) and temperature (T ) and under compressive load in the 

direction of x -axis. 

 
 

Figure 1. CNT-reinforced rectangular plate under compressive load and coordinate system 

         

 We assume that the material properties of CNTs and polymer are temperature 
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dependent [14]: 
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where, the elastic properties of CNT and polymer are denoted by ( ), ( , 1,2)cnt

ijY T i j   and 

( )mY T  respectively; ( 1, 2,3)j j   represents the productivity parameters for CNTs; 1z
cntV  and 

mV  are the volume fractions of CNTs and polymer, respectively, with 1 1z
cnt mV V  , and the 

following expression is valid for the total volume fraction of CNTs [11]: 
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where, cntm  is the mass of CNT, *
cntV  is the fraction of total volume fraction of CNT, cnt and 

m  are the densities of CNT and polymer and 1z

cntV are defined as (see, Figure 2): 
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     The cross-sections of the nanocomposite plate with (a) UD, (b) VD, (c) OD and (d) XD 

profiles are shown in Figure 2. 
 
 

 
 

 
Figure 2. Cross sections of rectangular plates with CNT profiles (a) UD, (b) VD, (c) OD, (d) XD 
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 3. Basic equations and solution procedure 

   

 In the framework of classical theory, the linear constitutive relations for FG-CNT 

reinforced plates are defined as follows [6]: 
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where ( 1,2)ij i   are the stresses, ( 1,2)ije i   are the strains on the midplane, 1( , )z T

ijE are the 

functionally graded material properties of rectangular plates and are defined by, 
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  In the framework of CT the force and moment components of nanocomposite plates 

are found from the following expressions [19-21]: 
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         The matrix form of the relations between the in-plane forces and the Airy stress function 
F  is presented below [21]: 
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    Using equations (1), (4), (6) and (7) the linear basis stability and compatibility equations 

for FG-CNT-reinforced plates are derived as follows: 
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where ( , 1,2)ijL i j  are differential operators and are defined as:  
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in which ijs  and ( , 1,2,3,4)ijr i j  included in these differential operators are the temperature 

dependent coefficients of rectangular plates with CNT profiles. 

    For a simply supported nanocomposite rectangular plate reinforced by CNTs, the 

displacement and Airy stress functions are sought as follows [20, 21]: 

 

                 1 1 2 2 1 2= sin( )sin( ), sin( )sin( )w c x y F c x y                                      (10) 

                                                           

where ( 1,2)ic i  are unknown amplitudes, 
1

mπ
=

a
 , 2

nπ
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b
  in which  ,m n  is the buckling 

mode. 

    Substituting expressions (10) into the system of equations (8), multiplying the obtained 

expressions by the weight function, and applying the Galerkin method, the following 

expression is obtained for the dimensionless critical load for FG-CNT reinforced rectangular 

plates: 
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         4. Results and discussion 

 

     In this section, the following materials and data are used to make original numerical 

analysis. A poly (methyl methacrylate) called PMMA reinforced with (10,10) single walled 

CNTs is used. The elastic properties of the PMMA are: Ym = 2.5×109 Pa 92.5 10 PamY   , 

0.34m   and  3 31.15 10 kg / mm   . The geometry and elastic properties of CNT are 

defined as: 9.26nm, 0.68nm, 0.067nmcnt cnt cntr a h    and 12

11 5.6466 10 Pa,cntY    
12

22 7.08 10 Pa,cntY    12

12 1.9445 10 Pa,cntG   12 0.175cnt  , 3 31.4 10 kg / mcnt   . The 

temperature-dependent properties of the polymer reinforced with CNT were defined in the 

work [11] and the same data are used in this study. The total volume fraction and efficiency 

parameters of CNTs are given in Table 1.  

 
*

cntV  1  2  3  

0.12 0.137 0.142 0.141 

0.17 1.022 1.626 1.585 

0.28 0.715 1.138 1.109 

 
Table 1. The total volume fractions and productivity parameters of CNTs 

 

 In Table 2, the distribution of the dimensionless critical load depending on the change 

of the volume fraction is presented for different temperature. The plate dimensions are taken 

into account as 0.3411,  / 1,  / 50b a b h b   in the numerical calculations. As can be seen 

from Table 2, when volume fraction increases, the values of the dimensionless critical load 

increment, and the increase of temperature decreases the dimensionless critical load values, 
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albeit weakly. The minimum value of the dimensionless critical load occurs at    , 1,1m n  . 

It can be seen from Table 2 that while the dimensionless critical load values of the plate with 

U profile are higher than the dimensionless critical load values of plates with the O and X 

profiles, those values are smaller than the dimensionless critical load values of the plate with 

XD profile. The effect of functionally graded profiles on the dimensionless critical load 

differs compared to the uniform profile. It is seen that the greatest effect on the dimensionless 

critical load occurs in the XD profile, and it has been found that this effect increases 

depending on the temperature. For example, when T=300 (K), the pattern effects on critical 

load are 45.29%, 45.52% and 47.7% respectively, while for T=750 (K) those effects are 

47.98%, 48.09% and 49.05% for *

cntV =0.12, 0.17 and 0.28, respectively. When the 

temperature changes from 300 (K) to 700 (K), the effect difference between the dimensionless 

critical load values in the XD profile becomes 7.42%, 7.66% and 6.52% for *

cntV =0.12, 0.17 

and 0.28, respectively. Since the dimensionless critical load values of plates with VD and OD 

profiles are the same, their effects on the buckling behavior of the plate are also the same, and 

the effect of the VD or OD patterns on the dimensionless critical load is about 29%-30% less 

than the effects of the XD profile.  

 

 1 /10crT ,    , 1,1m n   

 UD VD OD XD UD VD OD XD 

*

cntV  T=300 (K) T=450 (K) 

0.12 3.648  2.594  2.594  5.3  3.516  2.473  2.473  5.137  

0.17 5.374  3.821  3.821  7.82  5.177  3.641  3.641  7.573  

0.28 8.478  5.927  5.927  12.522  8.218  5.698  5.698  12.17  
*

cntV  T=600 (K) T=750 (K) 

0.12 3.414  2.372  2.372  5.019  3.316  2.274  2.274  4.907  

0.17 5.024  3.49  3.49  7.393  4.876  3.343  3.343  7.221  

0.28 8.032  5.517  5.517  11.933  7.854  5.342  5.342  11.706  

 
Table 2. Distribution of the dimensionless critical load depending on the change of the volume 

fraction for different temperatures 

          

 5. Conclusion 

           

         In this study, the buckling of composite rectangular plates patterned by CNTs under 

unidirectional compressive loads in the thermal environments is investigated based on the 

Kirchhoff-Love hypothesis. The governing equations of rectangular plates modeled by CNTs 

are derived using modified Donnell type plate theory. Then, by applying Galerkin's method, 

the basic equations are solved and an analytical expression for the dimensionless critical load 

is obtained. The effects of temperature, volume fraction and nanocomposite profiles on the 

critical axial load are discussed. The analyzes and comments revealed that the variations of 

temperature and volume fraction have a significant effect on the dimensionless critical load 

and these factors should be taken into account during the design of nanocomposite plates in 

the thermal environments. 
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